Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.188
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163842

RESUMO

This work intends to describe the physical properties of red blood cell (RBC) membranes in obese adults. The hypothesis driving this research is that obesity, in addition to increasing the amount of body fat, will also modify the lipid composition of membranes in cells other than adipocytes. Forty-nine control volunteers (16 male, 33 female, BMI 21.8 ± 5.6 and 21.5 ± 4.2 kg/m2, respectively) and 52 obese subjects (16 male and 36 female, BMI 38.2± 11.0 and 40.7 ± 8.7 kg/m2, respectively) were examined. The two physical techniques applied were atomic force microscopy (AFM) in the force spectroscopy mode, which allows the micromechanical measurement of penetration forces, and fluorescence anisotropy of trimethylammonium diphenylhexatriene (TMA-DPH), which provides information on lipid order at the membrane polar-nonpolar interface. These techniques, in combination with lipidomic studies, revealed a decreased rigidity in the interfacial region of the RBC membranes of obese as compared to control patients, related to parallel changes in lipid composition. Lipidomic data show an increase in the cholesterol/phospholipid mole ratio and a decrease in sphingomyelin contents in obese membranes. ω-3 fatty acids (e.g., docosahexaenoic acid) appear to be less prevalent in obese patient RBCs, and this is the case for both the global fatty acid distribution and for the individual major lipids in the membrane phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS). Moreover, some ω-6 fatty acids (e.g., arachidonic acid) are increased in obese patient RBCs. The switch from ω-3 to ω-6 lipids in obese subjects could be a major factor explaining the higher interfacial fluidity in obese patient RBC membranes.


Assuntos
Difenilexatrieno/análogos & derivados , Membrana Eritrocítica/fisiologia , Lipidômica/métodos , Obesidade/diagnóstico por imagem , Adolescente , Adulto , Fenômenos Biomecânicos , Estudos de Casos e Controles , Difenilexatrieno/administração & dosagem , Membrana Eritrocítica/metabolismo , Feminino , Polarização de Fluorescência , Humanos , Masculino , Microscopia de Força Atômica , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/fisiopatologia , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Adulto Jovem
2.
Sci Rep ; 11(1): 15898, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354145

RESUMO

The YPEL family genes are highly conserved across a diverse range of eukaryotic organisms and thus potentially involved in essential cellular processes. Ypel4, one of five YPEL family gene orthologs in mouse and human, is highly and specifically expressed in late terminal erythroid differentiation (TED). In this study, we investigated the role of Ypel4 in murine erythropoiesis, providing for the first time an in-depth description of a Ypel4-null phenotype in vivo. We demonstrated that the Ypel4-null mice displayed a secondary polycythemia with macro- and reticulocytosis. While lack of Ypel4 did not affect steady-state TED in the bone marrow or spleen, the anemia-recovering capacity of Ypel4-null cells was diminished. Furthermore, Ypel4-null red blood cells (RBC) were cleared from the circulation at an increased rate, demonstrating an intrinsic defect of RBCs. Scanning electron micrographs revealed an ovalocytic morphology of Ypel4-null RBCs and functional testing confirmed reduced deformability. Even though Band 3 protein levels were shown to be reduced in Ypel4-null RBC membranes, we could not find support for a physical interaction between YPEL4 and the Band 3 protein. In conclusion, our findings provide crucial insights into the role of Ypel4 in preserving normal red cell membrane integrity.


Assuntos
Proteínas de Transporte/genética , Membrana Eritrocítica/fisiologia , Eritropoese/genética , Anemia/metabolismo , Animais , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Proteínas de Transporte/metabolismo , Membrana Eritrocítica/genética , Eritrócitos/metabolismo , Eritrócitos Anormais/metabolismo , Eritropoese/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Policitemia/genética , Baço
3.
Sci Rep ; 11(1): 2429, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510337

RESUMO

A correlated human red blood cell membrane fluctuation dependent on D-glucose concentration was found with dual time resolved membrane fluctuation spectroscopy (D-TRMFS). This new technique is a modified version of the dual optical tweezers method that has been adapted to measure the mechanical properties of red blood cells (RBCs) at distant membrane points simultaneously, enabling correlation analysis. Mechanical parameters under different D-glucose concentrations were obtained from direct membrane flickering measurements, complemented with membrane fluidity measurements using Laurdan Generalized Polarization (GP) Microscopy. Our results show an increase in the fluctuation amplitude of the lipid bilayer, and a decline in tension value, bending modulus and fluidity as D-glucose concentration increases. Metabolic mechanisms are proposed as explanations for the results.


Assuntos
Membrana Eritrocítica/fisiologia , Glucose/farmacologia , Análise Espectral , 2-Naftilamina/análogos & derivados , 2-Naftilamina/farmacologia , Adulto , Fenômenos Biomecânicos , Membrana Eritrocítica/efeitos dos fármacos , Humanos , Lauratos/farmacologia , Fluidez de Membrana/efeitos dos fármacos , Processamento de Sinais Assistido por Computador
4.
Eur J Clin Invest ; 51(5): e13455, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33210748

RESUMO

BACKGROUND: A high level of glycosylated haemoglobin (HbA1c), which is a nonenzymatic glycosylation product, is correlated with an increased risk of developing microangiopathic complications in Diabetes Mellitus (DM). Erythrocyte membrane fluidity could provide a complementary index to monitor the development of complications since it is influenced by several hyperglycaemia-induced pathways and other independent risk factors. MATERIALS AND METHODS: 15 healthy controls and 33 patients with long-duration (≥20 years) type 1 Diabetes Mellitus (T1DM) were recruited. Diabetic subjects were classified into two groups: T1DM, constituted by 14 nonretinopathic patients, and T1DM + RD, constituted by 19 patients in any stage of diabetic retinopathy. Red blood cells (RBC) were incubated with the fluorescent Laurdan probe and median values of Generalized Polarization (GP), representative of membrane fluidity, were compared between the two groups. Baseline characteristics among groups have been compared with Student's t test or ANOVA. Values of P < .05 were considered statistically significant. RESULTS: All the participants were comparable for age, Body Mass Index (BMI), creatinine and lipid profile. The duration of diabetes was similar for T1DM (34.4 ± 7.8 years) and T1DM + RD (32.8 ± 7.5 years) subjects as well as values of HbA1c: (55.6 ± 8.1) mmol/mol for T1DM and (61.2 ± 11.0) mmol/mol for T1DM + RD, respectively. Erythrocyte plasmatic membranes of RD patients were found to be more fluid (GP: 0.40 ± 0.04) than non-RD patients (GP: 0.43 ± 0.03) with a statistically significant difference (P = .035). CONCLUSIONS: Altered erythrocyte membrane fluidity may therefore represent a marker of retinopathy in T1DM patients as a result of post-translational modifications of multifactorial aetiology (nonenzymatic glycosylation of proteins, generation of reactive oxygen species, lipid peroxidation).


Assuntos
Diabetes Mellitus Tipo 1/sangue , Retinopatia Diabética/sangue , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Fluidez de Membrana/fisiologia , Adulto , Biomarcadores , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/complicações , Retinopatia Diabética/etiologia , Membrana Eritrocítica/fisiologia , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
6.
Biomolecules ; 10(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050072

RESUMO

Depressive disorder (DD) is a psychiatric disorder whose molecular basis is not fully understood. It is assumed that reduced consumption of fish and omega-3 fatty acids (FA) is associated with DD. Other lipids such as total cholesterol (TCH), LDL-, and HDL-cholesterols (LDL-CH, HDL-CH) also play a role in depression. The primary endpoint of the study was the effect of omega-3 FA on the severity of depression in children and adolescents. This study aimed to investigate the secondary endpoint, relationship between depressive disorder symptoms and lipid profile, LDL- and HDL-cholesterol subfractions, Paraoxonase 1 (PON1) activities, and erythrocyte membrane fluidity in 58 depressed children and adolescents (calculated by the statistical program on the effect size), as well as the effect of omega-3 FA on the monitored parameters. Depressive symptoms were assessed by the Children's Depression Inventory (CDI), lipid profile by standard biochemical procedures, and LDL- and HDL-subfractions by the Lipoprint system. Basic biochemical parameters including lipid profile were compared with levels in 20 healthy children and were in the physiological range. Improvement of symptoms in the group supplemented with a fish oil emulsion rich in omega-3 FA in contrast to omega-6 FA (emulsion of sunflower oil) has been observed. We are the first to report that omega-3 FAs, but not omega-6 FA, increase large HDL subfractions (anti-atherogenic) after 12 weeks of supplementation and decrease small HDL subfractions (proatherogenic) in depressed children. We found a negative correlation between CDI score and HDL-CH and the large HDL subfraction, but not LDL-CH subfractions. CDI score was not associated with erythrocyte membrane fluidity. Our results suggest that HDL-CH and its subfractions, but not LDL-CH may play a role in the pathophysiology of depressive disorder. The study was registered under ISRCTN81655012.


Assuntos
Transtorno Depressivo/dietoterapia , Ácidos Graxos Ômega-3/uso terapêutico , Lipídeos/sangue , Fluidez de Membrana/fisiologia , Adolescente , Antidepressivos/uso terapêutico , Análise Química do Sangue , Fracionamento Químico , Criança , Transtorno Depressivo/sangue , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/patologia , Suplementos Nutricionais , Método Duplo-Cego , Membrana Eritrocítica/química , Membrana Eritrocítica/fisiologia , Ácidos Graxos Ômega-3/farmacologia , Feminino , Humanos , Lipídeos/análise , Lipoproteínas/análise , Lipoproteínas/sangue , Masculino , Índice de Gravidade de Doença , Eslováquia
7.
Blood ; 136(11): 1250-1261, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32702754

RESUMO

The mature red blood cell (RBC) lacks a nucleus and organelles characteristic of most cells, but it is elegantly structured to perform the essential function of delivering oxygen and removing carbon dioxide from all other cells while enduring the shear stress imposed by navigating small vessels and sinusoids. Over the past several decades, the efforts of biochemists, cell and molecular biologists, and hematologists have provided an appreciation of the complexity of RBC membrane structure, while studies of the RBC membrane disorders have offered valuable insights into structure-function relationships. Within the last decade, advances in genetic testing and its increased availability have made it possible to substantially build upon this foundational knowledge. Although disorders of the RBC membrane due to altered structural organization or altered transport function are heterogeneous, they often present with common clinical findings of hemolytic anemia. However, they may require substantially different management depending on the underlying pathophysiology. Accurate diagnosis is essential to avoid emergence of complications or inappropriate interventions. We propose an algorithm for laboratory evaluation of patients presenting with symptoms and signs of hemolytic anemia with a focus on RBC membrane disorders. Here, we review the genotypic and phenotypic variability of the RBC membrane disorders in order to raise the index of suspicion and highlight the need for correct and timely diagnosis.


Assuntos
Anemia Hemolítica/sangue , Membrana Eritrocítica/fisiologia , Eritrócitos Anormais/fisiologia , Anemia Hemolítica/diagnóstico , Anemia Hemolítica/genética , Anemia Hemolítica/terapia , Proteínas Sanguíneas/fisiologia , Água Corporal , Citoesqueleto/ultraestrutura , Dessecação , Membrana Eritrocítica/patologia , Eritrócitos Anormais/química , Eritrócitos Anormais/patologia , Estudos de Associação Genética , Humanos , Canais Iônicos/química , Modelos Moleculares , Mutação , Conformação Proteica , Relação Estrutura-Atividade
8.
PLoS Comput Biol ; 16(5): e1007890, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453720

RESUMO

The biconcave disk shape of the mammalian red blood cell (RBC) is unique to the RBC and is vital for its circulatory function. Due to the absence of a transcellular cytoskeleton, RBC shape is determined by the membrane skeleton, a network of actin filaments cross-linked by spectrin and attached to membrane proteins. While the physical properties of a uniformly distributed actin network interacting with the lipid bilayer membrane have been assumed to control RBC shape, recent experiments reveal that RBC biconcave shape also depends on the contractile activity of nonmuscle myosin IIA (NMIIA) motor proteins. Here, we use the classical Helfrich-Canham model for the RBC membrane to test the role of heterogeneous force distributions along the membrane and mimic the contractile activity of sparsely distributed NMIIA filaments. By incorporating this additional contribution to the Helfrich-Canham energy, we find that the RBC biconcave shape depends on the ratio of forces per unit volume in the dimple and rim regions of the RBC. Experimental measurements of NMIIA densities at the dimple and rim validate our prediction that (a) membrane forces must be non-uniform along the RBC membrane and (b) the force density must be larger in the dimple than the rim to produce the observed membrane curvatures. Furthermore, we predict that RBC membrane tension and the orientation of the applied forces play important roles in regulating this force-shape landscape. Our findings of heterogeneous force distributions on the plasma membrane for RBC shape maintenance may also have implications for shape maintenance in different cell types.


Assuntos
Deformação Eritrocítica , Membrana Eritrocítica/fisiologia , Eritrócitos/citologia , Miosinas/química , Citoesqueleto de Actina/química , Reagentes de Ligações Cruzadas/química , Glicoforinas/química , Humanos , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Microscopia de Fluorescência , Cadeias Pesadas de Miosina/química , Faloidina/química , Rodaminas/química , Estresse Mecânico
9.
Sci Rep ; 10(1): 8395, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439841

RESUMO

We highlight mechanical stretching and bending of membranes and the importance of membrane deformations in the analysis of swelling dynamics of biological systems, including cells and subcellular organelles. Membrane deformation upon swelling generates tensile stress and internal pressure, contributing to volume changes in biological systems. Therefore, in addition to physical (internal/external) and chemical factors, mechanical properties of the membranes should be considered in modeling analysis of cellular swelling. Here we describe an approach that considers mechanical properties of the membranes in the analysis of swelling dynamics of biological systems. This approach includes membrane bending and stretching deformations into the model, producing a more realistic description of swelling. We also discuss the effects of membrane stretching on swelling dynamics. We report that additional pressure generated by membrane bending is negligible, compared to pressures generated by membrane stretching, when both membrane surface area and volume are variable parameters. Note that bending deformations are reversible, while stretching deformation may be irreversible, leading to membrane disruption when they exceed a certain threshold level. Therefore, bending deformations need only be considered in reversible physiological swelling, whereas stretching deformations should also be considered in pathological irreversible swelling. Thus, the currently proposed approach may be used to develop a detailed biophysical model describing the transition from physiological to pathological swelling mode.


Assuntos
Membrana Celular/química , Modelos Biológicos , Fenômenos Biomecânicos , Membrana Celular/fisiologia , Cloretos/química , Cloretos/metabolismo , Simulação por Computador , Membrana Eritrocítica/química , Membrana Eritrocítica/fisiologia , Sódio/química , Sódio/metabolismo
10.
Biomech Model Mechanobiol ; 19(5): 1827-1843, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32100179

RESUMO

The red blood cell (RBC) deformability is a critical aspect, and assessing the cell deformation characteristics is essential for better diagnostics of healthy and deteriorating RBCs. There is a need to explore the connection between the cell deformation characteristics, cell morphology, disease states, storage lesion and cell shape-transformation conditions for better diagnostics and treatments. A numerical approach inspired from the previous research for RBC morphology predictions and for analysis of RBC deformations is proposed for the first time, to investigate the deformation characteristics of different RBC morphologies. The present study investigates the deformability characteristics of stomatocyte, discocyte and echinocyte morphologies during optical tweezers stretching and provides the opportunity to study the combined contribution of cytoskeletal spectrin network and the lipid-bilayer during RBC deformation. The proposed numerical approach predicts agreeable deformation characteristics of the healthy discocyte with the analogous experimental observations and is extended to further investigate the deformation characteristics of stomatocyte and echinocyte morphologies. In particular, the computer simulations are performed to investigate the influence of direct stretching forces on different equilibrium cell morphologies on cell spectrin link extensions and cell elongation index, along with a parametric analysis on membrane shear modulus, spectrin link extensibility, bending modulus and RBC membrane-bead contact diameter. The results agree with the experimentally observed stiffer nature of stomatocyte and echinocyte with respect to a healthy discocyte at experimentally determined membrane characteristics and suggest the preservation of relevant morphological characteristics, changes in spectrin link densities and the primary contribution of cytoskeletal spectrin network on deformation behaviour of stomatocyte, discocyte and echinocyte morphologies during optical tweezers stretching deformation. The numerical approach presented here forms the foundation for investigations into deformation characteristics and recoverability of RBCs undergoing storage lesion.


Assuntos
Forma Celular , Deformação Eritrocítica , Eritrócitos/citologia , Pinças Ópticas , Módulo de Elasticidade , Membrana Eritrocítica/fisiologia , Humanos , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes , Espectrina/metabolismo , Termodinâmica
11.
Biochim Biophys Acta Biomembr ; 1862(5): 183188, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31930963

RESUMO

Langmuir films prepared from bovine erythrocyte membranes (LFBEM) were studied and transferred to alkylated glasses (Langmuir-Blodgett films, LBBEM) in order to assess the effects of membrane molecular packing on Bovine Erythrocyte Acetylcholinesterase (BEA) catalytic activity. Surface pressure (π) vs Area isotherms showed three 2D-transitions at ~7, ~18 and ~44 mN/m and a collapse pressure at πc = 49 mN/m. The 0-12-0 mN/m compression-decompression cycles resulted reversible while those 0-40-0 mN/m exhibited a significant hysteresis. Taken together, EFM, BAM and AFM images and the stability of the film after 3C-D cycles, we can suggest that over the air-water interface as well as over the silanized glass substrate the surface is mostly covered by a monolayer with a few particles dispersed. Acetylthiocholine hydrolysis was assayed with BEA in bovine erythrocyte membrane suspensions (SBEM) and in LBBEM packed at 10 (LBBEM,10) and 35 mN/m (LBBEM,35), which gave the following kinetic parameters: Vmax = 3.41 ± 0.15, 0.021 ± 0.002 and 0.030 ± 0.003 nmol.min-1·µg prot-1 and KM = 0.11 ± 0.02, 0.047 ± 0.017 and 0.026 ± 0.017 mM, respectively. Although from SBEM to LBBEM we lost active enzyme, the catalytic efficiency (Vmax/KM) increased ~750 times. Eugenol and 1,8-cineol inhibited BEA catalytic activity in LBBEM,35. Our results demonstrate the transmission of information between the membrane and the environment within the subphase immediately below the membrane, where anchored proteins are hosted. This was reflected by the membrane packing-induced modulation of BEA catalytic activity. Furthermore, LBBEM provides a proof of concept for the development of biosensors to screen new green pesticides acting through BEA interaction.


Assuntos
Acetilcolinesterase/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/fisiologia , Adsorção/fisiologia , Animais , Catálise , Bovinos , Membrana Eritrocítica/fisiologia , Hidrólise , Cinética , Microscopia de Força Atômica/métodos , Estudo de Prova de Conceito , Propriedades de Superfície , Água/química
12.
Sci Rep ; 9(1): 14062, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575952

RESUMO

The optimal functionality of red blood cells is closely associated with the surrounding environment. This study was undertaken to analyze the changes in membrane profile, mean corpuscular hemoglobin (MCH), and cell membrane fluctuations (CMF) of healthy red blood cells (RBC) at varying temperatures. The temperature was elevated from 17 °C to 41 °C within a duration of less than one hour, and the holograms were recorded by an off-axis configuration. After hologram reconstruction, we extracted single RBCs and evaluated their morphologically related features (projected surface area and sphericity coefficient), MCH, and CMF. We observed that elevating the temperature results in changes in the three-dimensional (3D) profile. Since CMF amplitude is highly correlated to the bending curvature of RBC membrane, temperature-induced shape changes can alter CMF's map and amplitude; mainly larger fluctuations appear on dimple area at a higher temperature. Regardless of the shape changes, no alterations in MCH were seen with temperature variation.


Assuntos
Membrana Eritrocítica/fisiologia , Eritrócitos/fisiologia , Índices de Eritrócitos , Membrana Eritrocítica/ultraestrutura , Eritrócitos/química , Eritrócitos/ultraestrutura , Holografia , Temperatura Alta , Humanos , Imageamento Tridimensional , Masculino , Modelos Estatísticos
13.
Exp Gerontol ; 128: 110754, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31648010

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia accounting for 60-70% of all demented cases and one of the leading sources of morbidity and mortality in the aging population. Most of the recent literature regards the relationship between plasma oxidative stress and AD, showing that markers of lipid peroxidation are significantly higher in AD and Mild Cognitive Impairment (MCI) patients with respect to control subjects. The increased generation of reactive oxygen species that occurs in AD may be also responsible for oxidative injury to erythrocyte membranes. Since erythrocyte membrane serves as a variable barrier to oxygen transport, changes in its stability can induce cellular hypoxia and the consequence brain tissue oxygenation. In this study, plasma oxygen radical absorbance capacity (ORAC) and erythrocyte membrane fluidity have been evaluated in control, MCI and AD patients. Moreover erythrocyte membrane acetylcholinesterase (AchE) activity has been measured in control and AD patients. Plasma ORAC significantly decreased in MCI and AD subjects with respect to the controls, while a decrease in erythrocyte membrane fluidity has been observed only in MCI patients. No significant differences were detected in erythrocyte AchE activity between control subjects and AD patients.


Assuntos
Doença de Alzheimer/sangue , Disfunção Cognitiva/sangue , Membrana Eritrocítica/fisiologia , Fluidez de Membrana , Acetilcolinesterase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/metabolismo , Feminino , Fluorescência , Humanos , Masculino , Estresse Oxidativo
14.
PLoS One ; 14(9): e0222698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31545844

RESUMO

The osmotic stability of the erythrocyte membrane (OSEM) has been associated with changes in lipid profile, blood glucose and blood pressure. Changes in these parameters are very frequent in shift workers, possibly because of the lack of synchronization of biological rhythms, which results in the social jetlag. However, the existence of association between OSEM and circadian misalignment has not been investigated in this population. Therefore, this study investigated whether shift work, sleep time and social jetlag (SJL) are associated with biochemical and hematological variables. A population consisting of 79 men working at night (n = 37) or during the day (n = 42), aged between 21 and 65 years and with a mean BMI of 27.56 ± 4.0 kg/m2, was investigated cross-sectionally in relation to sleep time, SJL, anthropometric (height, weight and waist circumference) and blood variables, with emphasis on the OSEM. SJL was calculated by the absolute difference between the midpoint of sleep on work and rest days. The Generalized Linear Model (GzLM) was used to investigate the existence of associations between SJL and average sleep time in relation to the analyzed variables. Workers without SJL presented lower baseline lysis values of erythrocytes in isotonic medium in relation to workers with SJL. In addition, workers who slept on average less than 6 hours had higher OSEM, and higher total and LDL-cholesterol in relation to those who slept more than 6 hours, regardless of the shift. It is possible that the association of sleep deprivation and SJL with erythrocyte membrane stability is mediated through changes in the lipid profile.


Assuntos
Membrana Eritrocítica/fisiologia , Jornada de Trabalho em Turnos/efeitos adversos , Sono/fisiologia , Adulto , Idoso , Estudos Transversais , Humanos , Síndrome do Jet Lag/sangue , Síndrome do Jet Lag/fisiopatologia , Masculino , Pessoa de Meia-Idade , Privação do Sono/sangue , Privação do Sono/fisiopatologia , Adulto Jovem
15.
Soft Matter ; 15(27): 5511-5520, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241632

RESUMO

Red blood cells in shear flow show a variety of different shapes due to the complex interplay between hydrodynamics and membrane elasticity. Malaria-infected red blood cells become generally adhesive and less deformable. Adhesion to a substrate leads to a reduction in shape variability and to a flipping motion of the non-spherical shapes during the mid-stage of infection. Here, we present a complete state diagram for wall adhesion of red blood cells in shear flow obtained by simulations, using a particle-based mesoscale hydrodynamics approach, multiparticle collision dynamics. We find that cell flipping at a substrate is replaced by crawling beyond a critical shear rate, which increases with both membrane stiffness and viscosity contrast between the cytosol and suspending medium. This change in cell dynamics resembles the transition between tumbling and tank-treading for red blood cells in free shear flow. In the context of malaria infections, the flipping-crawling transition would strongly increase the adhesive interactions with the vascular endothelium, but might be suppressed by the combined effect of increased elasticity and viscosity contrast.


Assuntos
Eritrócitos/citologia , Eritrócitos/fisiologia , Adesão Celular , Movimento Celular , Forma Celular , Simulação por Computador , Elasticidade , Membrana Eritrocítica/fisiologia , Cinética , Fenômenos Físicos , Resistência ao Cisalhamento , Estresse Mecânico , Propriedades de Superfície , Viscosidade
16.
Sci Adv ; 5(5): eaaw4466, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31149638

RESUMO

The tight coupling between cerebral blood flow and neural activity is a key feature of normal brain function and forms the basis of functional hyperemia. The mechanisms coupling neural activity to vascular responses, however, remain elusive despite decades of research. Recent studies have shown that cerebral functional hyperemia begins in capillaries, and red blood cells (RBCs) act as autonomous regulators of brain capillary perfusion. RBCs then respond to local changes of oxygen tension (PO2) and regulate their capillary velocity. Using ex vivo microfluidics and in vivo two-photon microscopy, we examined RBC capillary velocity as a function of PO2 and showed that deoxygenated hemoglobin and band 3 interactions on RBC membrane are the molecular switch that responds to local PO2 changes and controls RBC capillary velocity. Capillary hyperemia can be controlled by manipulating RBC properties independent of the neurovascular unit, providing an effective strategy to treat or prevent impaired functional hyperemia.


Assuntos
Encéfalo/irrigação sanguínea , Membrana Eritrocítica/fisiologia , Hiperemia/sangue , Oxigênio/sangue , Animais , Proteína 1 de Troca de Ânion do Eritrócito/genética , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos , Hiperemia/fisiopatologia , Dispositivos Lab-On-A-Chip , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
17.
Biomech Model Mechanobiol ; 18(4): 845-881, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30847662

RESUMO

Despite decades of research related to hemolysis, the accuracy of prediction algorithms for complex flows leaves much to be desired. Fundamental questions remain about how different types of fluid stresses translate to red cell membrane failure. While cellular- and molecular-level simulations hold promise, spatial resolution to such small scales is computationally intensive. This review summarizes approaches to continuum-level modeling of hemolysis, a method that is likely to be useful well into the future for design of typical cardiovascular devices. Weaknesses are revealed for the Eulerian method of hemolysis prediction and for the linearized damage function. Wide variations in scaling of red cell membrane tension are demonstrated with different types of fluid stresses when the scalar fluid stress is the same, as well as when the energy dissipation rate is the same. New experimental data are needed for red cell damage in simple flows with controlled levels of different types of stresses, including laminar shear, laminar extension (normal), turbulent shear, and turbulent extension. Such data can be curve-fit to create more universal continuum-level models and can serve to validate numerical simulations.


Assuntos
Circulação Sanguínea/fisiologia , Hemólise/fisiologia , Modelos Cardiovasculares , Animais , Membrana Eritrocítica/fisiologia , Humanos , Estresse Mecânico , Viscosidade
18.
Comput Methods Biomech Biomed Engin ; 22(5): 465-474, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30714397

RESUMO

By using a three-dimensional continuum model, we simulate the shape memory of a red blood cell after the remove of external forces. The purpose of this study is to illustrate the effect of membrane reference state on cell behavior during the recovery process. The reference state of an elastic element is the geometry with zero stress. Since the cell membrane is composed of cytoskeleton and lipid bilayer, both the reference states of cytoskeleton (RSC) and lipid bilayer (RSL) are considered. Results show that a non-spherical RSC can result in shape memory. The energy barrier due to non-spherical RSC is determined by the ratio of the equator length to the meridian length of the RSC. Thus different RSCs can have similar energy barrier and leading to identical recovery response. A series of simulations of more intermediate RSCs show that the recovery time scale is inversely proportional to the energy barrier. Comparing to spherical RSL, a spheroid RSL contributes to the energy barrier and recovery time. Furthermore, we observe a folding recovery due to the biconcave RSL which is different from the tank treading recovery. These results may motivate novel numerical and experimental studies to determine the exact RSC and RSL.


Assuntos
Forma Celular , Membrana Eritrocítica/fisiologia , Eritrócitos/fisiologia , Simulação por Computador , Citoesqueleto/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Resistência ao Cisalhamento , Fatores de Tempo
19.
Nanoscale ; 11(6): 2757-2766, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30672545

RESUMO

Some studies have reported a positive association between plasma fibrinogen levels, erythrocyte aggregation and essential arterial hypertension (EAH). The aim of this study was to understand how the interaction between fibrinogen and its erythrocyte membrane receptor is altered in EAH. EAH patients (n = 31) and healthy blood donors (n = 65) were enrolled in the study. EAH patients were therapeutically controlled for the disease, presenting a systolic blood pressure between 108 and 180 mmHg and a diastolic blood pressure between 66 and 123 mmHg. Clinical evaluation included blood pressure monitoring, electrocardiography, echocardiography and blood cell count. The hemorheological parameters were also analyzed. Fibrinogen-erythrocyte binding force and frequency were evaluated quantitatively, at the single-molecule level, using atomic force microscopy (AFM). Changes in erythrocyte elasticity were also evaluated. Force spectroscopy data showed that the average fibrinogen-erythrocyte binding forces increase from 40.4 ± 3.0 pN in healthy donors to 73.8 ± 8.1 pN in patients with EAH, despite a lower binding frequency for patients compared to the control group (7.9 ± 1.6% vs. 27.6 ± 4.2%, respectively). Elasticity studies revealed an increase of erythrocyte stiffness in the patients. The stronger fibrinogen binding to erythrocytes from EAH patients and alteration in cell elasticity may lead to changes in the whole blood flow. The patients' altered hemorheological parameters may also contribute to these blood flow perturbations. The transient bridging of two erythrocytes, by the simultaneous binding of fibrinogen to both of them, promoting erythrocyte aggregation, could represent an important cardiovascular risk factor.


Assuntos
Eritrócitos/metabolismo , Hipertensão Essencial/sangue , Hipertensão Essencial/epidemiologia , Fibrinogênio/metabolismo , Idoso , Pressão Sanguínea/fisiologia , Estudos de Casos e Controles , Técnicas de Diagnóstico Cardiovascular , Agregação Eritrocítica/fisiologia , Membrana Eritrocítica/fisiologia , Hipertensão Essencial/fisiopatologia , Feminino , Humanos , Masculino , Microscopia de Força Atômica , Pessoa de Meia-Idade
20.
PLoS One ; 14(12): e0226640, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31891585

RESUMO

Human red blood cells (RBCs) need to deform in order to pass through capillaries in human vasculature with diameter smaller than that of the RBC. An altered RBC cell membrane stiffness (CMS), thereby, is likely to have consequences on their flow rate. RBC CMS is known to be affected by several commonly encountered disease conditions. This study was carried out to investigate whether an increase in RBC CMS, to the extent seen in such commonly encountered medical conditions, affects the RBC flow rate through channels with diameters comparable to that of the RBC. To do this, we use RBCs extracted from a healthy individual with no known medical conditions and treated with various concentrations of Bovine Serum Albumin (BSA). We study their flow through polycarbonate membranes with pores of diameter 5µm and 8µm which are smaller than and comparable to the RBC diameter respectively. The studies are carried out at constant hematocrit and volumetric flow rate. We find that when the diameter of the capillary is smaller than that of the RBC, the flow rate of the RBCs is lowered as the concentration of BSA is increased while the reverse is true when the diameter is comparable to that of the RBC. We confirm that this is a consequence of altered CMS of the RBCs from their reorientation dynamics in an Optical Tweezer. We find that a treatment with 0.50mg/ml BSA mimics the situation for RBCs extracted from a healthy individual while concentrations higher than 0.50mg/ml elevate the RBC CMS across a range expected for individuals with a condition of hyperglycemia. Using a simple theoretical model of the RBC deformation process at the entry of a narrow channel, we extract the RBC membrane bending modulus from their flow rate.


Assuntos
Deformação Eritrocítica/fisiologia , Membrana Eritrocítica/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo , Filtração , Humanos , Hiperglicemia/sangue , Filtros Microporos , Pessoa de Meia-Idade , Modelos Biológicos , Pinças Ópticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...